

Using Graphene as Transparent Electrodes for OLED Lighting

Ning Li
IBM T. J. Watson Research Center

Email: lini@us.ibm.com Phone: 1-914-945-1689

The Search for New Transparent Conductive Electrodes (TCEs)

	Sheet resistance	Optical Transmissio n	Ease of Customisation	Haze	Ease of patterning	Thinness	Stability	Flexibility	Reflection	Low Cost
ITO-on-Glass	111	111	111	111	111	✓	1111	✓	✓	✓
ITO-on-PET	///	111	111	111	111	✓	////	11	✓	✓
Silver Nanowires	1111	1111	111	✓	111	1111	✓	11111	1111	111
Graphene	✓	11111	11	111	111	11111	11	11111	11111	✓
Carbon Nanotubes	444	1111	444	44	444	111	1111	11111	11111	11
PDOT:PSS	✓	111	111	*	1111	11	1	11111	111	1111
Micro Fine Wire	1111	✓	11111	11	11111	✓	11	11111	444	1111
Metal Mesh (emboss)	11111	444	✓	11	11111	11111	1111	1111	111	1111
Metal Mesh (direct print)	11111	✓	✓	11	11111	44	11	1111	111	1111
Metal mesh (etching)	11111	444	11	11	11111	44	11	1111	111	1111
Other nanotechnology	11111	1111	11111	11	11111	4444	444	11111	4 4	444

Excellent	11111
Good	1111
Moderate	111
Moderate-to-Poor	11
Poor	✓

IDTechEx, 2013

Motivation:

- Reduce cost
- New features: highly flexible, stretchable...
- More performance: higher conductivity, better charge injection, better light extraction...

Advantages of Graphene TCEs

Conventional OLED on ITO/Glass

Low cost flexible OLED on Graphene/Plastic

	Graphene Transparent Electrode
Mechanic Flexibility	The most flexible transparent electrode, bending radius <1mm, enable rollable and foldable applications
Light Extraction	Better light extraction , high transmission, very low reflection, no light trapping in the electrode
Stability	Stable and compatible with organics. Very inert material, no oxidation or reaction with organics
Substrate	Same performance on all substrates
Cost	Low cost graphene process are being developed. Huge cost reduction potential using large area roll to roll processes.

3

Challenges for Graphene TCE

Keep High Transmittance

- High transparency >97%
- Decreases ~3% for each additional layer

Improve Conductivity and Charge Injection

- High carrier mobility >150,000cm²/Vs in theory, but measured is ~3,000cm²/Vs, R_s>1kΩ/ □
- Work function W_F= 4.5eV, too low as Anode for hole injection

Doping Graphene to Increase Conductivity and Work Function

Energy Level Diagram

Graphene Energy Solution Solut

Graphene

Doping Process

- Increases graphene free carrier density for lower resistance
- Increases graphene work function for hole injection
- Non-volatile charge-transfer complex
- Longer doping lifetime

Doping Graphene to Increase Conductivity and Work Function

Raman Spectroscopy

Work Function and Carrier Density

Material	W _F (eV)	Carrier density
ITO	4.78	
Undoped Graphene	4.70	~5x10 ¹¹ cm ⁻²
P-doped Graphene	5.10	~3x10 ¹³ cm ⁻²

Work function (W_F) Shift Raman Shift = \triangle W_F×42 cm⁻¹eV⁻¹

• Sheet Resistance is reduced from >1k Ω / \Box to 100~200 Ω / \Box (97% transmittance).

Hole Injection Using High W_F Interface Layer

Direct Hole Injection Into CBP

Much Reduced Energy Barrier

Direct and Efficient hole injection from Graphene to emitter host material CBP

Green OLED on Graphene

Green OLED on Graphene Structure

Al/LiF, cathode TPBi, electron injection CBP: Ir(ppy)₂(acac), emitter **CBP**, hole injection **CBP:** MoO₃ p-type organic Interface layer **Graphene Anode Plastic or Glass Substrate**

Equivalent Performance as on ITO

 OLED on single layer graphene (SLG) on plastic exhibits similar I-V and L-V as same device on ITO/glass

Enhance Light Intensity for General Lighting Requirement

SLG-OLED with high W_F injection layer

SLG-OLED with conventional NPB layer

OLED output luminance is enhanced using high work function injection layer

Enhance Light Out-coupling Efficiency

- EQE>60% is achieved at 10,000cd/m² with enhanced light out-coupling
- More light is coupled out of the Graphene electrode with lens

10⁵

White OLEDs (WOLEDs) on Graphene

WOLED Structure on Graphene

Al/LiF Cathode TPBi, electron injection **CBP: Firpic, blue emitter** CBP: Ir(ppy)₂(acac), green emitter CBP: Ir(ppy)₂(acac): Ir(MDQ)₂(acac) rèd emitter **CBP**, hole injection **CBP:** MoO₃ p-doped organic Interface layer **Graphene Anode Plastic or Glass Substrate**

Demo of Graphene-WOLED

Graphene-WOLED with Lighting Performance

Color Rendering Index (CRI) =85

 $PE > 80 \text{Im/W} \text{ at } 3,000 \text{cd/m}^2$

A demonstration of WOLEDs on alternative TCE with lighting performance

Rapid Progress of TCEs for OLEDs

TCE Ma	terials	Conductivity/ Transparency (at 550 nm)	Demonstrated OLED Performance	Light Extraction	Reliability	Mechanical Flexibility	
ITO	0	10Ω/sq at 90%	>100lm/W	Light trapping in ITO	Good	poor	
CN ⁻	Ts	500Ω/sq at 85%	10cd/A at 1000cd/m ²	Medium	Excellent	Flexible /Stretchable	
Met Nanov		9.7Ω/sq at 89% 30Ω/sq at 93%	54lm/W similar to ITO control device	High Angle Uniformity	Good	Flexible /Stretchable	
Condu Polyi		39Ω/sq at 80%	12% EQE similar to ITO device	High	Medium	Flexible	
Graph	nene	125Ω/sq at 97% 30Ω/sq at 90%	103 lm/W for green 80lm/W for white	High	Excellent	Most flexible /Stretchable	

References:

Ellmer, *Nat Photon.* 2012, 6, 809-817 Yu, *Adv. Mater.* 2011, 23, 3989-3994 Nirmalraj, *Nano Lett.* 2009, 9, 3890-3895 Liang, *Nat Photon* 2013, 7, 817-824. Gaynor, *Adv. Mater.* 2013, 25, 4006-4013. Kim, Adv. Funct. Mater. 2013, 23, 3763-3769. Cai, Adv. Mater. 2012, 24, 4337-4342. Bae, Nat. Nanotechnol 2010, 5, 574-578. Han, Nat Photon 2012, 6, 105-110. Li, Nat. Commun. 2013, 4, 2294.

Summary

- White OLED on Graphene achieved lighting performance
 - Improved conductivity for better charge distribution on Graphene
 - Improved charge injection from Graphene to organics for lower turn on voltage and high brightness and efficiency

- ☐ Further challenges for Graphene electrodes
 - Improve conductivity and transparency, large area lighting panels
 - Roll to roll process to increase throughput and reduce cost
 - Optimize for light extraction
 - **...**